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Abstract.  In this paper, a design of an optimal output feedback control 

for decentralized Load Frequency Controllers (LFC) of a multi-area 

interconnected power system using Genetic Algorithm (GA), is 

presented. The original system is decomposed into subsystems (areas). 

A Local Output Feedback Controller (LOFC) is designed for each 

subsystem and its relative optimal gain matrix is derived using GA. 

The proposed approach is implemented on a three-area interconnected 

power system and could be extended to more areas in different 

configurations (radial, ring). The system performance is analysed by 

simulating different disturbances. Effectiveness is shown through a 

comparative study with the Conventional Integral Control (CIC) for 

different operating conditions and a wide-range variation in the 

system parameters with the presence of the turbine Generation Rate 

Constraints (GRC) nonlinearity.  

Keywords: Load Frequency Control, Overlapping Decentralized 

Technique, Output Feedback Control, Genetic Algorithm. 

1.  Introduction 

For economical reasons and reliability, neighboring power systems are 

connected. The net power flow on the tie lines connecting a system to 

another one is frequently scheduled by a prior contract basis
[1-3]

. System 

disturbances caused by load fluctuation result in changes in tie-line 

power and system frequency which give rise to a Load Frequency 

Control (LFC) problem. The LFC’s goal is to regulate the power output 
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of an electric power generator within a prescribed area, in response to 

changes in system frequency, tie-line loading, or both.  

Researches in Ref. [4-8] employed optimal control theory to solve 

the LFC problem.  However, the realization of such controller is difficult 

because the feedback portion of the optimal controller requires the 

measurement of all system state variables that are in general not 

accessible. Even if state estimation techniques, employed in the power 

system control centers, are used to estimate the inaccessible state 

variables, the data needs to be transferred, in large interconnected 

systems, over long distances. In addition, the system data required for 

determining the control signal in each subsystem is measured in discrete 

mode and then transferred over telemetry
[2,9]

. It is also recognized that 

the centralized LFC poses many difficulties in telemetering the system 

data for process to a centralized controller when the size and complexity 

of the interconnected power system increases
[9]
. Accordingly, it is more 

reliable to deal with a decentralized LFC than a centralized one. In LFC 

problem, often the control criterion is to minimize the Area Control Error 

(ACE) who is defined as a linear combination of the tie-line power and 

the area frequency deviations from their set points. In this, significant 

efforts on control strategies for optimal feedback controllers were  

made
[3-8,10-12]

.  

In this paper, Genetic Algorithm (GA) is applied as an optimizer 

technique for the output feedback controller defined by a constant 

feedback gain matrix. GA application represents a new tool that is 

characterized by some good features as compared to classical 

optimization techniques
[13-18]

. The application is made to a decentralized 

LFC through Siljak’s technique
[19-20]

. In order to achieve of the LFC 

requirements, the application of the Conventional Integral Control (CIC) 

is also considered for comparison purposes with GA based controller. In 

short, this paper provides a simple modified approach for designing 

discrete Local Output Feedback for decentralized LFC of an 

interconnected power system. The procedure is started by decomposing 

the interconnected power system into areas. A local discrete output 

feedback, based on the sampling interval, is designed for each area where 

GA is used to determine the Local Output Feedback Controller (LOFC) 

gains matrix. GA uses binary numbers to perform its main steps namely, 

selection, crossover, and mutation. The passage from binary to real is 

required since the cost function (fitness) is evaluated with real floating 
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numbers. The proposed design procedure is applied to three 

interconnected power system. Effectiveness is demonstrated using 

different operating conditions and a wide-range variation in system 

parameters. To reflect practical situations, the effect of the turbine GRC 

nonlinearity
[21-23]

 is investigated. The results are presented to show the 

validity of the proposed controller for different operating conditions and 

a wide-range in parameters variation, in the presence of the turbine 

Generation Rate Constraints (GRC) nonlinearity.  

2.  Power System Modeling and Decomposition  

The proposed control methodology is implemented on a three-area 

interconnected power system of which one is a hydro and the others are 

steam with/without reheat power plants
[21-23]

, respectively. 

2.1 Continuous-Time Dynamic Model 

The continuous linear dynamic model, in state-space form, can be 

written as: 

BuAxx +=&                                             (1) 

Where 

x    state vector (n × 1, n = 13) 

u    control & disturbance vector (6 × 1) 

[ ]tΔPΔPΔPΔP ΔPΔP
c3d3c2d2c1d1

=u  

A (n × n) & B (n × 6) constant matrices  

The state variables and inputs are defined as follows: 

• Incremental frequency deviations:  

ΔF1 = x1, ΔF2 = x6, ΔF3 = x11 

• Incremental change in tie-line powers: 

ΔPtie1 = x5, ΔPtie2 = x10–x5, ΔPtie3 =  –x10. 

• Incremental load demand change: ΔPdi (i =1-3): disturbance 

• Incremental speed changer position: ΔPci ( i =1-3): control 

• Area control error: ACEi = ΔPtiei + BiΔFi, Bi: weight factor (i = 1-3) 
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The entries of A and B can be deduced from Fig. 1 and the 

Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. A three-area interconnected power system. 

2.2 System Decomposition 

The overlapping decentralization technique proposed by Siljak
[19-20]

 is 

employed to decompose the full system into subsystems (areas). In this 

technique, the areas represent the subsystems while the change in tie-line 

power is the overlapping part. The details of decomposition of 

interconnected multi-areas of LFC in longitudinal connection have been 

proposed in Ref. [7]. In the considered case, the system is decomposed 
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With this representation, the system becomes 
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Where Aij , Bij (i, j = 1-3) are subsystem matrices whose elements 

depend on the system parameters and           

t
]

ci
ΔP,

di
P[Δ=

i
u   ( i =1-3) 

The new state vector x~  (nxm), with n = 15 and m = 1, is related to x by: 

Txx =

~                               (4) 

Where T is a non-square matrix (15  × 13) defined by: 
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     0    0    0   0

0     1    0    0   0

0     1    0    0   0

0    0      0   0

0    0    0    1    0

0    0    0    1    0

0   0    0    0  

                                        (5) 

Where Ii is an identity matrix of dimension “i” whereas 0 is a matrix 

of 0 entries and proper dimension, “1” number one. 

The expanded system can be reformulated using overlapping 

subsystems as follows: 

u B + x Ax
~

~

~~

=&                                            (6) 

Where A
~

 (15 × 15) and B
~

(15 × 6) represent the overlapping 

expanded system matrices and   

MTATA +
∗

=
~

                                  (7) 

TB=B
~

                                                (8) 
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M is a square matrix (15 × 15) whose elements are all zeroes only:  
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Using the previous equations, the expanded system can be described 

as: 
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Where 
i

A
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 (i = 1-3) are the matrices corresponding to the 

three decoupled subsystems. The control input to each subsystem is 

defined by t
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P
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i
u .  

For the control purpose, assume weak coupling element such as 
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subsystems are given by: 
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It must be noted that the system described by (1) and the subsystems, 

obtained after decoupling process using (12), should be controllable. 

2.3 Discrete-Time Dynamic Model 

A discrete-time model for each subsystem can be obtained, for i =1-3, 

from (12) in the form: 
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where, xi(k) = xi(kTs), ui(k) = ui(kTs) are specified at kTs, k = 0,1,... and 

Φi, Δi are the state transition and input driving matrices for i = 1, 2 and 3, 

respectively, which depend on the sampling interval Ts. To simplify the 

analysis, “i” is dropped.  Equation (13) can be rewritten as: 
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u Δ
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1k
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                              (14)  

3.  Output Feedback Control   

On the basis of an assumed sampling interval Ts, the state prediction 

equation of the discrete-time linear model described by (14) can be 

derived as shown in Appendix 3.  

The prediction equation of the augmented vector wk+1 is:  

kk1k
Ωuθw=w +

+

                               (15) 

The output control law, 
koo

wFu = , may be found by minimizing, with 

respect to uo, the quadratic-performance index:  
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The matrix Fo is the optimal output feedback gains matrix. To obtain 

Q, R and S matrices, F4 and F5 must be known. The matrices Qs and Hs 

are weighting matrices that should be selected properly to meet some 

desired performance. The former should be symmetric positive semi-

definite whereas, the later should be symmetric positive definite matrix to 

get the global minimum
[24-25]

. 
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To calculate the output feedback control gains Fo, two optimization 

solver techniques are presented, namely, Genetic Algorithm (GA) and the 

Dynamic Programming (DP). 

4.  Dynamic Programming (DP)  

Dynamic Programming (DP) technique is used to minimize a cost 

function Jo given by (16) at several stages starting from initial stage k = 0 

and moving backward until stage k = r. If r is large enough, the DP 

algorithm converges to Fo that is constant. The multi-stage dynamic 

programming algorithm
[24-25]

 is summarized as follows: 

Step 1: Initialization process 

σ = 0  

Compute 

η = R + 2* Ω
 t
*σ*θ 

μ  = S + Ω
t
σΩ 

F = -0.5*μ
-1

η 

k=1 

Step 2: Iterate while k > 0 

            {F0 = F 

     σ = Q + θ
t
σθ + F

t
η + F

t
μF 

     μ  = S + Ω
 t
σ Ω 

η = R + 2* Ω
 t
*σ*θ 

F = -0.5*μ
-1

η 

If |F-F0| > tolerance, break, stop 

k = k+1; 

           }  

         FD = F 

Where FD is the Dynamic programming gains matrix. 
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5.  Optimization Problem Formulation  

To obtain a constant output feedback control gains matrix Fo using 

an optimization technique, replace
k
u  by 

k
w
o
F

k
u =  into (16) to get;  
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On the basis of assumed sampling time interval Ts, the optimization 

problem is thus defined by: 

Find Fo that minimizes ∑
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Using Genetic Algorithm (GA) 

With G matrix is given by
o

t

o

t

o
SFFRFQG ++= .  

6. Genetic Algorithm (GA) 

GA is based on the selection of a cost function and a search interval 

then an initial population, randomly chosen inside the search interval, 

and finally, an iterative application of the three main steps; reproduction, 

crossover, and mutation, until convergence (stabilization of the fitness 

function) is obtained or a specific number of iterations is reached. The 3 

steps are described as follows
[16-17]

: 

Reproduction  

Select the chromosomes from current generation (population) to be 

parents to the next generation. A chromosome is selected (reproduced) 

based on its fitness. Chromosomes with lowest fitness values are 

discarded and those with higher fitness values, i.e., fittest, are kept for 

the next generation, i.e., they survive.  

Crossover   

To produce a variety in the next generation, some members 

(chromosomes) are paired randomly. Each paired string exchanges a 
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randomly chosen portion of its bits with its mate. This produces new 

chromosomes that maintain many of the characteristics of their parents. 

Mutation   

After crossover, each chromosome of the population will alter some 

of its bits, i.e. if bit is 0 it is changed to 1 and vice-versa. Usually, the 

number of bits altered is very low. The mutation step prevents the 

algorithm from loosing some potentially useful information that might 

prevent the algorithm from reaching its optimum. 

The detailed algorithm of GA is described in Appendix B. Other 

varieties of GA exist and can be found in the literature.  

7.  Simulation Results 

The digital simulation is done using MATLAB Platform with the 

following data for GA:  

Pc      =  0.25     Crossover probability   

PM     =  0.1        Mutation probability 

Npop =  10      Population number 

Nb     =  10  Binary string length 

The system used comprises 3 areas; one hydro and 2 steam power 

plants one with and the other without reheat, as shown in Fig. 1. Under 

normal operating conditions, the simulation is started by calculating the 

OFC gains for each area using GA, as shown in Table 1.  

                                          Table 1. OFC gains matrices. 

Fo 

0.0491 

–0.0044 

0.0430 

–0.0219 

–0.0113 

–0.0494 

0.0351 

0.0185 

–0.0197 

0.0267 

–0.0320 

–0.0217 

–0.0504 

–0.0187 

0.0274 

0.0269 

0.0309 

0.0324 

0.0012 

–0.0014 

–0.0217 

0.0399 

–0.0218 

–0.0288 

–0.0384 

–0.0396 

0.0405 

To be more practical, the turbine Generation Rate Constraints (GRC) 

nonlinearity should be included in the system. The GRC for these plants 
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may be represented by adding a limiter to the turbine model. The 

generation rate limiter of 10% MW per  minute
[21-23]

  is considered, i.e.,  

d(ΔPgi)/dt  ≤  δ 

where 

δ  = 10% MW/min
 
=  0.17% MW/s 

The governor dead-band (DB) is simulated using the describing function 

approach.  

In the following tests, the nonlinearity is considered only in the last one.  

Figure 2 shows the transient responses of ACE, ΔF and ΔPtie of the three 

areas with 1% step change in ΔPdi (i = 1-3). Similarly, Fig. 3 shows the 

transient responses of ACE1, ΔF1 and ΔPtie1 when the system is subjected to a 

step input of ΔPd1 = ΔPd2  = 5% and ΔPd3 = 3% using both GA and CIC. The 

responses of the controlled system using either CIC or GA verify the LFC 

requirements of removal of steady state errors but GA shows better 

performance than CIC. For further testing the effectiveness of the proposed 

controllers, the system parameter values (Tp1, kp1, Tp2, kp2, R1) are increased 

by 20% and (Tp3, kp3, R2, R3) by 30 % simultaneously, from their base case 

values. Figure 4 shows the transient response of ACE, ΔF and ΔPtie when the 

three areas are subjected to 5%, 5% and 3% step change in ΔPdi (i = 1-3), 

respectively, besides the parameter changes mentioned previously. For a 

wide-range testing of For further testing the effectiveness of the proposed 

controller, the system parameter values (Tpi, kpi, Ri) where i = 1-3, are 

increased by 50% from nominal values with the presence of the GRC 

nonlinearity. Figure 5 shows the transient response of ACE, ΔF and ΔPtie 

when the three areas are subjected to 5%, 5% and 3% step change in ΔPdi  (i = 

1-3), respectively, while experiencing a wide-range parameters variation and 

the presence of the GRC nonlinearity. The results indicate that the proposed 

controller yield good performance whereas the CIC fails as shown in Fig. 6. 

This research work was limited to the comparison of the results 

obtained using GA to those of CIC however, the obtained results were 

also compared to those done using optimization techniques namely, 

Simulated Annealing (SA) and Evolutionary Programming (EP), as 

applied to Load Frequency Control (LFC)
[26-27]

. The results were found 

excellent and very close. 
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Fig. 2(a). Area control error response. 

 

 

 

 

 

 

 

 

Fig. 2(b). Frequency response. 

 

 

 

 

 

 

 

 

Fig. 2(c). Tie-Line power response. 

Fig. 2.   System response due to ΔPdi = 1%, i = 1-3, (GA). 
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Fig. 3(a). Area control error response (Area 1). 

 

 

 

 

 

 

 

 

Fig. 3(b). Frequency response (Area 1). 

 

 

 

 

 

 

 

 

Fig. 3(c). Tie-Line power response (Area 1). 

Fig. 3. System response for CIC & GA (ΔPd1 = ΔPd2  = 5% & ΔPd3 = 3%). 
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Fig. 4(a). ACE response. 

 

 

 

 

 

 

 

 

 

 

Fig. 4(b). Frequency response. 

 

 

 

 

 

 

 

 

 

Fig. 4(c). Tie-Line power response.  

Fig. 4. System response due to ΔPd1 = ΔPd2 = 5% & ΔPd3 = 3% with parameter changes (GA). 
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Fig. 5(a). ACE response. 

 

 

 

 

 

 

 

 

Fig. 5(b). Frequency response. 

 

 

 

 

 

 

 

 

Fig. 5(c). Tie-Line power response.  

Fig. 5. System response for ΔPd1 = ΔPd2 = 5%, ΔPd3 =3%, parameters variation & nonlinearity (GA). 
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Fig. 6.  System response for ΔPd1 = ΔPd2 = 5%, ΔPd3 = 3%, parameters variation & nonlinearity (CIC). 

7. Conclusion 

This paper presented the design of a discrete-time optimal Output 

Feedback Control (OFC) for a decentralized Load Frequency Control 

(LFC) system to achieve improvements in transient and steady state 

responses, and to insure zero steady-state errors. The optimization 

technique used is the Genetic Algorithm (GA). The proposed approach 

has been applied to a three-area power system connected in a longitudinal 

structure where different disturbances were applied. The results of local 

decentralized discrete output feedback controllers were encouraging. To 

show the effectiveness of the proposed GA-based OFC, a comparative 

study with the Conventional Integral Control (CIC) is presented where 

GA shows superior performance improvement. 

The advantages of the proposed controller over the widely known 

optimal state feedback controllers as applied to LFC design are as 

follows. 

1. The system states should be measured or estimated in order to 

apply state feedback optimal control as it is not the case for OFC where 

only measured signals such as the Area Control Error (ACE) and its 

historical data are used. 

2. The proposed controller is local; therefore, each area is regulated 

by using its own measurable data.   

3. The realization of each regulator is simple and costless  
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As an extension to this work, power system connected in 

longitudinal or ring multi-area with and without nonlinearities will be 

considered.   
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Notations 

x     state vector   

u     control & disturbance vector  

Fi frequency deviations of area i 

Ptiei tie-line "i" power  

Pdi  load demand (disturbance) in area "i"   

Pci  speed changer position control in area "i"  

ACEi  Area control error in area "i"  
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Appendices 

Appendix A1: System Data 

  The parameters of the first area: 

  Tp1 = 3.76; kp1 = 20; Tw = 1; T3 = 32; T2 = 5; T1 = 0.6; R1 = 3; T12 = 0.545/(2*pi); B1 =  0.383;   

  The parameters of the second area: 

   kp2 = 80; Tp2 = 20; Tt1 = 0.3; Tr1 = 10; kr1 = 0.5; Tg1 = 0.38; R2 = 2.4; T21 = T12; B2 = 0.425;  

   The parameters of the third area: 

kp2 = 100; Tp3 = 20; T32; = T21; Tg2 = 0.4; R3 = 2.4; B3 = 0.425 

Appendix A2:  Genetic Algorithm 

Step 1: Initialization 

Select appropriate search intervals for  

F = {F1, …, FNpop} 

Where  

Npop is the population size, and  

Fi is the i
th chromosome written as a horizontal concatenation:  Fi = [F1 F2 … Fm] where 

i=1, …, Npop 

m: being the number of parameters to be optimized.  

The parameter Fj = pj is bounded, i.e., pj∈[pmin,j, pmax,j] where j = 1, …, m. 

The optimum of the fitness function f(F)  is evaluated for each chromosome Fi written in 

real-based numbers whereas, the three main GA steps use binary-based numbers. The passage 

from real to binary (encoding) and vice versa (decoding) is illustrated through an example 

shortly.  

Generate randomly a population Pk=0. The index “k” is a counter that represents the 

generation index (k = 0, initial population, k = 1, 1st generation, etc.). 

Encoding/Decoding of a Chromosome: 

Because floating binary numbers are used in GA, a conversion from real to binary 

(encoding) and vice versa (decoding) is required.    

Encoding of String 2 of Fi1:  

Fi1bin   = dec2bin[(Fi1dec – p1min)/Q1 ], Q1 = (p1max – p1min)/(2
Nbit –1) 

Decoding of String 2 of Fi1:  

Fi1dec = bin2dec[Fi1bin]*Q1 + p1min, Q1 =(Fi1max- Fi1min)/(2
Nbit –1) 

With 

bin2dec: conversion from binary to decimal 

dec2bin:   conversion from decimal to binary 
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Step 2: Reproduction 

• For each value of F = {F1, …, FNpop}, evaluate the value of the corresponding fitness 

function, i.e. f(F1), …, f(FNpop). 

• Compute the total value of the fitness function Ftot = f(F1)+ …+ f(FNpop). 

• Compute the probability of selection for each chromosome Fi : pi = f(Fi)/Ftot, i =1,…,Npop. 

• Compute the cumulative probability for each chromosome Fi: qi = p1+…+pi  

• Generate a random number r ∈ [0,1]. 

• For all Fi (i =1, …, Npop) do the following: if  r < q1 select F1 as a candidate for 

reproduction, otherwise select Ft  such that qt-1 < r <  qt. 

• At this stage, some chromosomes will survive (reproduced or kept) whereas others will die 

(eliminated). 

Step 3: Crossover 

• The probability of crossover, Pc, gives the number of chromosomes rc that will undergo the 

crossover process: rc = Pc*Npop, i.e. Pc times the size of the population. 

• For each chromosome of the generation (after reproduction), generate a random number r ∈ 

[0,1] interval, then choose Fi (i = 1, …, Npop) for which r < Pc. 

• Randomly couple the chromosomes, that is, each 2 chromosomes together. 

• For each couple, randomly generate an integer number “pos” in [1, Npop] interval. This 

number indicates the position of the bit submitted to crossover position, i.e., for rc=1: 

F1 =  (b1…bpos bpos+1 …bNb), F2 =  (c1 …cpos cpos+1 …cNb) 

are replaced by 

F1 = (b1…bpos cpos+1 bpos+2   …bNb), F2 = (c1…cpos bpos+1 cpos+2   …cNb) 

Where Nb is the number of bits. 

Step 4: Mutation 

The probability of mutation, PM, gives the number rM of bits in a chromosome to undergo 

the mutation process: rM = Nb*PM*Npop. For each bit, generate a random number r ∈ [0,1] then 

inverse the bit if r < PM.  

Step 5: Updating and Stopping Criterion 

At this point, a new generation Pk+1 is obtained from Pk. Set Pk = Pk+1 and repeat step 2 

(reproduction), step 3 (crossover) and step 4 (mutation) using the new Pi until convergence is 

obtained, i.e., error = | Pk – Pk-1 | < ε where ε is a predetermined tolerance. 

Appendix A3:  Output Feedback Control   

On the basis of an assumed sampling interval Ts, the state prediction equation of the 

discrete-time linear model described by  
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Using (A3.1), the following equation can be derived: 
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With H1 (NxN), H2 (NxN), and N is the number of measurements of the outputs and inputs from 

t=kTs back to t=(k-N+1)Ts. 

Multiplying (A3.3) by H1

–1, one gets   
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The output-prediction equation can obtain as follows: 
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Equation (A3.5) completely defines the process dynamics without  reference to the state 

vector x. The minimum number of previous N measurements is selected such that N ≥ n/p where 

p is the number of outputs and n the dimension of Φ [14-15]. 

To obtain output predication formulation, (A3.5) can be rearranged as follows. After 

vertically partitioning    β  into 
2
   β and 

1
   β ,  (A3.5) becomes: 
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And (A3.7) is augmented by additional rows to form;  
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Or, in simplified form, 
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Thus, the prediction equation of the augmented vector wk+1 can be written in compact form as:  
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A state feedback optimal control law for the system described by (A3.1), uk = Fx, xk, may be 

found by minimizing, with respect to uk, the quadratic-performance index:  
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Where Fs is the optimal state feedback gains.  

Since (A3.9) is similar to (A3.1), by a similar way, an output feedback optimal control law for 

the system described by (A3.9),
koo

wFu = , may be found by minimizing, with respect to uo, the 

quadratic-performance index: 

When using (A3.9), one gets 
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The matrix Fo is the optimal output feedback gains matrix. To obtain Q, R and S matrices, F4 

and F5 must be known. The matrices Qs and Hs are weighting matrices that should be selected 

properly to meet some desired performance. The former should be symmetric positive semi-

definite whereas, the later should be symmetric positive definite matrix to get the global minimum 

[14-15]. F4 and F5 can be obtained as described next.  
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From (A3.4) and if F2 (N × N) is vertically partitioned into F4 (N × m) and F3 (N × [N-m]), 

(A3.4) becomes   
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That can be rearranged as:  
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To calculate the output feedback control gains Fo, two optimization solver techniques are used 

in this research work, namely, the Genetic Algorithm  (GA) and the Dynamic Programming (DP). 
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